

Tetrahedron Letters 43 (2002) 1783-1787

TETRAHEDRON LETTERS

Darcyribeirine, a novel pentacyclic indole alkaloid from Rauvolfia grandiflora Mart.

Náuvia Maria Cancelieri, Ivo José Curcino Vieira,* Jan Schripsema, Leda Mathias and Raimundo Braz-Filho

Setor de Química de Produtos Naturais-LCQUI-CCT, Universidade Estadual do Norte Fluminense, 28015-620, Campos dos Goytacazes, Rio de Janeiro, Brazil

Received 22 October 2001; revised 14 January 2002; accepted 15 January 2002

Abstract—Three pentacyclic indole alkaloids, one novel named darcyribeirine (1) and the known isoreserpiline (2) and isoreserpine (3), were isolated from the root bark of the *Rauvolfia grandiflora* Mart. The structures were established by spectroscopic data. © 2002 Elsevier Science Ltd. All rights reserved.

Rauvolfia genus, family Apocynaceae, continues to be fascinating as it produces a number of indole alkaloids with novel skeletons, which are interesting from the biosynthetic point of view as well as for their medicinal aspect¹ and spectroscopic analysis. *Rauvolfia grandiflora* Mart., which are bushes of 2–5 m, are commonly known as 'Saco-de-Gambá' in the Atlantic forest in the northern

part of Rio de Janeiro State. In the present paper, results of an investigation of *R. grandiflora* Mart. root bark are reported describing the chemical characterization of a new pentacyclic indole alkaloid with the unique feature of a C-18–C-19 double bond in an ajmalan skeleton, which was named darcyribeirine (1) and two known indole alkaloids isoreserpiline (2)^{2.3} and isoreserpine (3).³

Keywords: alkaloids; indole; NMR; plants.

* Corresponding author. Tel.: 55-24-27261597; fax: 55-24-27261519; e-mail: curcino@uenf.br

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00151-X

The known isoreserpiline (2) and isoreserpine (3) were identified by spectral data, involving mainly ¹H and ¹³C NMR spectra and comparison with literature values.^{2,3} The 1D and 2D NMR spectra of 2 were used to assign unambiguously the ¹H and ¹³C chemical shifts (Tables 1 and 2).

Dried and powdered root bark (1.67 kg) from *Rauvolfia* grandiflora Mart. was extracted at room temperature using CH_2Cl_2 furnishing, after solvent evaporation, 40.52 g of the extract.

The 50% CH₂Cl₂ extract was chromatographed on a silica gel column with a gradient of MeOH in CHCl₃ supplying seven fractions. The first fraction (3.40 g) it was rechromatographed on silica gel column with gradient of MeOH in CHCl₃ supplying four fractions. The compounds 1 (154 mg) and 2 (180 mg) were purified from the fraction one (0.40 g) of the second column

after having been rechromatographed in column with silica gel and eluted with hexane:ethyl acetate (8:2). The compound 3 (5 mg) were purified from the five fraction (0.7 g) of the first column with the same conditions.

Darcyribeirine (1) was obtained as an amorphous solid $[\alpha]_{D}^{20} -36^{\circ}$ (CHCl₃, *c* 0.05). The UV spectrum showed absorption at λ_{max} 226 and 299 nm (log ε 4.53 and 4.01, respectively) typical of a substituted indole chromophore,⁴ while the IR spectrum revealed bands at v_{max} 3366 (N–H), 1701 (conjugated carbonyl ester group stretching), 2932–2833 (C–H stretching), 1570 (characteristic of a methoxyl indole) and 906–761 cm⁻¹ (C–H bending of substituted benzene ring).⁴ The EIMS showed a molecular peak at m/z 412 daltons ([M]^{•+}) which together with ¹H and ¹³C NMR spectral data (Table 1) allowed to deduce the molecular formula $C_{23}H_{28}N_2O_5$ (twelve degrees of unsaturation) compatible with an ajmalan skeleton.^{5,6}

Table 1. ¹H (400 MHz) and ¹³C (100 MHz) NMR for darcyribeirine (1) and isoreserpiline (2), in DMSO- d_6 (1) and CDCl₃ (2) as solvents and residual DMSO- d_6 and CDCl₃ used as internal references ($\delta_{\rm H}$ 2.50 and $\delta_{\rm C}$ 39.50; 7.24 and 70.00, respectively). Chemical shifts (δ , ppm) and coupling constants (J, Hz, in parentheses)^a

		1	2		
	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	δ_{H}	
С					
2	132.73	_	133.14	_	
7	106.22	_	107.82	_	
8	119.98	_	119.94	_	
10	144.28	_	144.78	_	
11	145.94	_	146.41	_	
13	130.57	_	130.13	_	
16	108.44	_	109.49	_	
19	155.61		_	_	
22	165.70	_	168.03	_	
СН					
3	54.18	3.36 (dddd, 9.4, 3.1, 2.4, 1.5), H-3ax	59.91	3.32 (m)	
9	101.59	6.88 (s)	100.35	6.89 (s)	
12	96.64	6.94 (s)	94.82	6.81 (s)	
15	28.42	2.80 (ddd, 5.1, 4.5, 4.3)	31.29	2.75 (dt, 4.6, 11.9)	
17	151.03	7.44 (s)	155.75	7.56 (s)	
19	_	_	72.47	4.49 (dq, 6.2, 10.4)	
20	35.95	2.90 (ddd, 8.9, 4.6, 4.5), H-20ax	38.41	1.69 (m)	
CH ₂					
5	51.47	3.02 (ddd, 11.6, 5.8, 1.5), H-5eq	53.67	2.95 (dd, 5.9, 9.9)	
		2.61 (ddd, 11.6, 11.2, 4.5), H-5ax		2.54 (dt, 9.9, 5.3)	
6	19.82	2.80 (dddd, 14.8, 11.2, 5.8, 2.4), H-6ax	21.82	2.88 (m)	
		2.51 (dddd, 14.8, 4.5, 1.5, 1.5), H-6 eq		2.64 (m)	
14	29.52	2.69 (ddd, 13.6, 5.1, 3.1), H-14eq	34.26	2.48 (ddd, 3.2, 4.0, 11.9)	
		1.77 (ddd, 13.6, 9.4, 4.3), H-14ax		1.55 (q, 11.9)	
18	93.19	4.69 (d, 1.5)	_	_	
		4.56 (d, 1.5)			
21	51.71	2.84 (dd, 11.4, 4.6), H-21eq	56.25	3.09 (dd, 12.3, 2.0)	
		2.62 (dd, 11.4, 8.9), H-21ax		2.72 (dd, 12.3, 3.5)	
CH ₃					
18	_	_	18.49	1.40 (d, 6.2)	
MeO-10	56.41	3.77 (s)	56.25	3.89 (s)	
MeO-11	56.10	3.76 (s)	56.41	3.91 (s)	
MeO-22	50.56	3.74 (s)	51.10	3.74 (s)	
HN-1		10.12 (s)		7.72 (s)	

^a Number of hydrogens bound to carbon atoms deduced by comparative analysis of HBBD- and DEPT-¹³C NMR spectra. Chemical shifts and coupling constants (*J*) obtained from 1D ¹H NMR spectrum. Superimposed ¹H signals are described without multiplicity and chemical shifts deduced by HMQC, HMBC (Table 2) and ¹H–¹H COSY spectra.

The main peaks observed in the EIMS spectrum are in agreement with the proposed fragmentation mechanisms summarized in Scheme 1.

The ¹H and ¹³C NMR spectra of 1, together with $^{1}\text{H}^{-13}\text{C}$ COSY $^{-n}J_{\text{CH}}$ (n=1, HMQC; n=2 and 3, HMBC) and comparison with ¹H and ¹³C NMR spectral data of 2 (Tables 1 and 2), are in agreement with a pentacyclic indole alkaloid containing carbomethoxy group [1: C=O ($\delta_{\rm C}$ 165.70) and MeO ($\delta_{\rm C}$ 50.56 and $\delta_{\rm H}$ 3.74, s); **2**: C=O ($\delta_{\rm C}$ 168.03) and MeO ($\delta_{\rm C}$ 51.19 and $\delta_{\rm H}$ 3.74, s)] and indole moiety 10,11-dimethoxylated (Tables 1 and 2), revealing as a major difference from 2, the presence of signals corresponding to an exocyclic double bond located between carbon atoms C-19 (δ_{C} 155.61) and CH₂-20 [$\delta_{\rm C}$ 93.19 (CH₂-18); $\delta_{\rm H}$ 4.69 (d, J=1.5 Hz, H-18a and 4.56 (d, 1.5 Hz, H-18b)]. The location of a double bond at C-20 was unequivocally deduced by heteronuclear spin-spin interaction between carbon C-19 ($\delta_{\rm C}$ 155.61) and hydrogens 2H-18 ($\delta_{\rm H}$ 4.69 and 4.56, ${}^{2}J_{CH}$), H-20 (δ_{H} 2.90, ${}^{2}J_{CH}$), H-15 (δ_{H} 2.80, ${}^{3}J_{CH}$) and H-17 (δ_{H} 7.44, ${}^{3}J_{CH}$) revealed by cross-peaks observed in the HMBC spectrum of 1. Additional heteronuclear long-range couplings are summarized in Table 2.

The relative stereochemistry of 1 was determined from the coupling constants of relevant hydrogens and from the observed ¹H–¹H NOESY. The values corresponding to vicinal interaction $({}^{3}J_{H,H})$ between the hydrogens H-3 and H-14ax (J=9.4 Hz, axial-axial interaction with)H-3ax), H-15 and both 2H-14 (J=5.1 and 4.3 Hz) and H-20 (J=4.5 Hz) and H-20 (J=8.9 Hz, axial-axial)interaction with H-21ax) are consistent with the relative configuration shown in 1 and 1a, since the H-15 signal $(\delta_{\rm H} 2.80, \text{ ddd}, J=5.1, 4.5, 4.3 \text{ Hz})$ reveals no axialaxial couplings (Table 1). Consistent with these observations, the NOESY spectrum of 1 at 70°C showed cross-peaks assigned to dipolar interaction (spatial proximity, Fig. 1) of HN-1 ($\delta_{\rm H}$ 10.12) with H-12 ($\delta_{\rm H}$ 6.94) and H-14 α ($\delta_{\rm H}$ 1.77); H-3 ($\delta_{\rm H}$ 3.36) with H-21 β $(\delta_{\rm H} 2.62)$; H-14 α $(\delta_{\rm H} 1.77)$ with H-15 $(\delta_{\rm H} 2.80)$ and H-20 ($\delta_{\rm H}$ 2.90); H-18b ($\delta_{\rm H}$ 4.56) with H-21 α ($\delta_{\rm H}$ 2.69) and H-20 ($\delta_{\rm H}$ 2.90); H-9 ($\delta_{\rm H}$ 6.88) with H-6b ($\delta_{\rm H}$ 2.51) and MeO-10 ($\delta_{\rm H}$ 3.76); H-12 H-12 ($\delta_{\rm H}$ 6.94) with MeO-11 ($\delta_{\rm H}$ 3.77).

Table 2. Long-range couplings of hydrogen and carbon atoms observed in the HMBC (${}^{n}J_{CH}$, n=2 and 3) spectra of darcyribeirine (1) and isoreserpiline (2), in DMSO- d_6 (1) and CDCl₃ (2) as solvents and residual DMSO- d_6 and CDCl₃ used as internal references ($\delta_{\rm H}$ 2.50 and $\delta_{\rm C}$ 39.50; 7.24 and 70.00, respectively). Chemical shifts (δ , ppm) and coupling constants (J, Hz, in parentheses)^a

			1			2
	$\delta_{\rm C}$	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	$\delta_{\rm C}$	$^{2}J_{\rm CH}$	${}^{3}J_{\rm CH}$
c						
2	132.73	HN-1	H-3, 2H-6	133.14	H-3, HN-1, H-12	H-14b, H-9, H-6b
7	106.22	2H-6	HN-1, H-9, H-5ax	107.82	2H-6	HN-1, H-9, 2H-5
8	119.98		H-12, HN-1	119.94		H-12, HN-1
10	144.28	H-9	H-12, MeO-10	144.78		H-12, MeO-10
11	145.94	H-12	H-9, MeO-11	146.41		H-9, MeO-11
13	130.57	H-12	H-9	130.13	HN-1, H-12	H-9
16	108.44	H-17		109.49	H-17, H-15	H-14b
19	155.61	2H-18, H-20	H-17, H-15	_		
22	165.70		H-17, MeO-22	168.03		H-15, H-17, MeO-22
СН						
3	54.18	H-14eq	2H-5, 2H-21	59.91	H-14b	2H-5, 2H-21
9	101.59	*		100.35		
12	96.64			94.82		
15	28.42	2H-14	H-17, H-21ax, H-19	31.29	2H-14	H-17, H-21a, H-19
17	151.03		H-15	155.75		H-15
19	_	_	_	72.47	3H-18	H-17, 2H-21
20	35.95	2H-21	H-14ax, 3H-18	38.41	2H-21	H-14a, 3H-18
CH ₂						
5	51.47	2H-6	H-3	53.67		H-21a
6	19.82	H-5ax		21.82	H-5a	
14	29.52			34.26		
18	93.19			_	_	_
21	51.71			56.25		
CH ₃						
18	_	_	_	18.49		
MeO-10	56.41			56.25		
MeO-11	56.10			56.41		
MeO-22	50.56			51.10		

^a Number of hydrogens bound to carbon atoms deduced by comparative analysis of HBBD- and DEPT-¹³C NMR spectra. Chemical shifts and coupling constants (*J*) obtained from 1D ¹H NMR spectrum. Superimposed ¹H signals are described without multiplicity and chemical shifts deduced by HMQC (Table 1) and ¹H-¹H COSY spectra.

Scheme 1. Proposed fragmentation mechanisms of 1 (only peaks classified as principals).

Figure 1. Important ${}^{1}H{-}{}^{1}H$ NOESY correlations for darcyribeirine (1).

Thus, the structure of the new pentacyclic indole alkaloid isolated from *R. grandiflora* Mart. was established as *rel*- $\Delta^{19(18)}$ -reserptiine (1), named darcyribeirine.

The results of the extensive application of 1D and 2D NMR spectral techniques were also used to confirm the

structure and to establish the ${}^{1}H$ and ${}^{13}C$ resonance assignments of 1 and 2 (Tables 1 and 2).

Acknowledgements

The authors are grateful to Programa de Apoio ao Desenvolvimento Científico e Tecnológico (PADCT)/ Financiadora de Estudos e Projetos (FINEP) and Fundação Estadual do Norte Fluminense (FENORTE) for grants, to CNPq for a research fellowship. The 'Centro Nacional de Ressonância Magnética Nuclear', Departamento de Bioquímica Médica, UFRJ and CENAU-REMN, Departamento de Química Orgânica e Inorgânica, UFC, Fortaleza, Ceará is gratefully acknowledged for access to the NMR facilities.

References

1. World Health Organization. The use of essential drugs, Report of WHO Expert Committee *Technical Report Series*; WHO: Geneva, 1990; p. 685.

- Zhang, W.; De Bruyn, A.; Budesinsky, M. Magn. Reson. Chem. 1989, 27, 935–940.
- 3. Lounasmaa, M.; Tolvanem, A. Heterocycles 1986, 24, 3229–3281.
- 4. Verpoorte, R. J. Nat. Prod. 1986, 49, 1-25.
- 5. Gottlieb, O. R.; Braz-Filho, R.; Craveiro, A. A.; Alencar,

J. W. Introduccion a La espectrometria de Masa de Substancias Organicas; Secretaria; General de La Organización de Los Estados Americanos, Ed.; Washington, D.C. 1983, p. 102.

6. Malik, A.; Afza, N.; Siddiqui, S. *Heterocycles* **1981**, *16*, 1727–1733.